Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 240, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864249

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown. METHODS: 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aß plaque deposition, pro-inflammatory factors, and the content of Aß in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aß 1-42 (oAß) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAß was traced by immunofluorescence. RESULTS: In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aß) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aß accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aß autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aß degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway. CONCLUSIONS: These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aß clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Lactente , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
2.
J Ethnopharmacol ; 279: 114367, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34174375

RESUMO

BACKGROUND: Although the rapid emergence of coronavirus disease 2019 (COVID-19) poses a considerable threat to global public health, no specific treatment is available for COVID-19. ReDuNing injection (RDN) is a traditional Chinese medicine known to exert antibacterial, antiviral, antipyretic, and anti-inflammatory effects. In addition, RDN has been recommended in the diagnosis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated pneumonia by the National Health Council and the National Administration of Chinese Medicine. However, there is no information regarding its efficacy against COVID-19. AIM OF STUDY: This study was designed to determine the clinical efficacy of RDN in patients with COVID-19 and characterize its antiviral activity against SARS-CoV-2 in vitro. MATERIALS AND METHODS: A total of 50 adults with COVID-19 were included in this study, and the primary endpoint was recovery from clinical symptoms following 14 days of treatment. General improvements were defined as the disappearance of the major symptoms of infection including fever, fatigue, and cough. The secondary endpoints included the proportion of patients who achieved clinical symptom amelioration on days 7 and 10, time to clinical recovery, time to a negative nucleic acid test result, duration of hospitalization, and time to defervescence. Plaque reduction and cytopathic effect assays were also performed in vitro, and reverse-transcription quantitative PCR was performed to evaluate the expression of inflammatory cytokines (TNF-α, IP-10, MCP-1, IL-6, IFN-α, IFN-γ, IL-2 and CCL-5) during SARS-CoV-2 infection. RESULTS: The RDN group exhibited a shorter median time for the resolution of clinical symptoms (120 vs. 220 h, P < 0.0001), less time to a negative PCR test result (215 vs. 310 h, P = 0.0017), shorter hospitalization (14.8 vs. 18.5 days, P = 0.0002), and lower timeframe for defervescence (24.5 vs. 75 h, P = 0.0001) than the control group. In addition, time to improved imaging was also shorter in the RDN group than in the control group (6 vs.8.9 days, P = 0.0273); symptom resolution rates were higher in the RDN group than in the control group at 7 (96.30% vs. 39.13%, P < 0.0001) and 10 days (96.30% vs. 56.52%, P = 0.0008). No allergic reactions or anaphylactic responses were reported in this trial. RDN markedly inhibited SARS-CoV-2 proliferation and viral plaque formation in vitro. In addition, RDN significantly reduced inflammatory cytokine production in infected cells. CONCLUSIONS: RDN relieves clinical symptoms in patients with COVID-19 and reduces SARS-CoV-2 infection by regulating inflammatory cytokine-related disorders, suggestion that this medication might be a safe and effective treatment for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Citocinas/análise , Medicamentos de Ervas Chinesas , SARS-CoV-2 , Antivirais/administração & dosagem , Antivirais/efeitos adversos , COVID-19/epidemiologia , COVID-19/imunologia , Teste de Ácido Nucleico para COVID-19/métodos , Linhagem Celular , China/epidemiologia , Testes Imunológicos de Citotoxicidade/métodos , Monitoramento de Medicamentos/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Avaliação de Sintomas/métodos , Resultado do Tratamento
3.
J Ethnopharmacol ; 280: 114128, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872750

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Influenza virus infection is widely believed to cause mild symptoms, but can lead to high mortality and severe disease complicated by secondary bacterial pneumonia. Traditional Chinese medicine (TCM) has been proposed as a promising agent to treat respiratory viral infections. A herbal formula Lianhuaqingwen capsule (LHQW) comprising two prescriptions: Maxing Shigan decoction and Yinqiao San, has been used clinically to treat respiratory infection with immune regulatory effects. However, little is known about the capacity of LHQW against influenza-induced secondary bacterial pneumonia. AIM OF STUDY: This study aimed to evaluate the efficacy and underlying mechanism of LHQW on influenza A virus A/PR/8/34 (PR8) secondary methicillin-resistant Staphy-lococcus aureus (MRSA) infection. METHODS: The anti-adhesion activity of LHQW against PR8-induced MRSA infection was assessed in human lung epithelial (A549) cells and the effect of LHQW on the expression of intracellular adhesion molecule 1 (ICAM-1) was detected. Also, the mRNA expression levels of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation in PR8-infected A549 cells were determined. The body weight change, survivals, viral titers, colonies and the pathological parameters after LHQW treatment in severe pneumonia model have all been systematically determined. RESULTS: LHQW significantly reduced the adhesion of MRSA to PR8-infected A549 cells in a dose-dependent manner by suppressing the up-regulation of bacterial receptors. LHQW also markedly declined the overexpression of IL-6, IL-8, and TNF-α induced by LPS stimulated-A549 cells following influenza virus infection. Furthermore, the abnormal changes of lung index in dual-infection mice were relieved after administered with LHQW in preventive and therapeutic mode, but with no significantly difference (P > 0.05). LHQW could not effectively improve survival rate or prolong the survival time of mice (P > 0.05). LHQW (1000 mg/kg/d) administered prophylactically significantly decreased the lung viral titers (P < 0.05), slightly downregulated IL-6 but TNF-α, IL-1ß levels and improved lung pathological inflammation including neutrophil infiltration, necrosis, which is consistent with the expression of inflammatory factors. CONCLUSIONS: LHQW inhibited influenza-induced bacterial adhesion by down-regulating the adhesion molecules with the improvement trend on severe pneumonia, indicating that it can be used as an adjuvant medication in severe viral-bacterial pneumonia therapy rather than as a single medication.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Pneumonia Bacteriana/prevenção & controle , Células A549 , Animais , Moléculas de Adesão Celular/metabolismo , Cães , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/virologia , Taxa de Sobrevida
4.
Phytomedicine ; 78: 153296, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890913

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has extensively and rapidly spread in the world, causing an outbreak of acute infectious pneumonia. However, no specific antiviral drugs or vaccines can be used. Phillyrin (KD-1), a representative ingredient of Forsythia suspensa, possesses anti-inflammatory, anti-oxidant, and antiviral activities. However, little is known about the antiviral abilities and mechanism of KD-1 against SARS-CoV-2 and human coronavirus 229E (HCoV-229E). PURPOSE: The study was designed to investigate the antiviral and anti-inflammatory activities of KD-1 against the novel SARS-CoV-2 and HCoV-229E and its potential effect in regulating host immune response in vitro. METHODS: The antiviral activities of KD-1 against SARS-CoV-2 and HCoV-229E were assessed in Vero E6 cells using cytopathic effect and plaque-reduction assay. Proinflammatory cytokine expression levels upon infection with SARS-CoV-2 and HCoV-229E infection in Huh-7 cells were measured by real-time quantitative PCR assays. Western blot assay was used to determine the protein expression of nuclear factor kappa B (NF-κB) p65, p-NF-κB p65, IκBα, and p-IκBα in Huh-7 cells, which are the key targets of the NF-κB pathway. RESULTS: KD-1 could significantly inhibit SARS-CoV-2 and HCoV-229E replication in vitro. KD-1 could also markedly reduce the production of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, MCP-1, and IP-10) at the mRNA levels. Moreover, KD-1 could significantly reduce the protein expression of p-NF-κB p65, NF-κB p65, and p-IκBα, while increasing the expression of IκBα in Huh-7 cells. CONCLUSIONS: KD-1 could significantly inhibit virus proliferation in vitro, the up-regulated expression of proinflammatory cytokines induced by SARS-CoV-2 and HCoV-229E by regulating the activity of the NF-кB signaling pathway. Our findings indicated that KD-1 protected against virus attack and can thus be used as a novel strategy for controlling the coronavirus disease 2019.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Infecções por Coronavirus , Glucosídeos/farmacologia , NF-kappa B/metabolismo , Pandemias , Pneumonia Viral , Animais , COVID-19 , Chlorocebus aethiops , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Forsythia/química , Humanos , Fitoterapia , Extratos Vegetais/farmacologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/virologia , Transdução de Sinais/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
5.
Pharmacol Res ; 158: 104850, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360580

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide through person-to-person contact, causing a public health emergency of international concern. At present, there is no specific antiviral treatment recommended for SARS-CoV-2 infection. Liu Shen capsule (LS), a traditional Chinese medicine, has been proven to have a wide spectrum of pharmacological properties, such as anti-inflammatory, antiviral and immunomodulatory activities. However, little is known about the antiviral effect of LS against SARS-CoV-2. Herein, the study was designed to investigate the antiviral activity of SARS-CoV-2 and its potential effect in regulating the host's immune response. The inhibitory effect of LS against SARS-CoV-2 replication in Vero E6 cells was evaluated by using the cytopathic effect (CPE) and plaque reduction assay. The number of virions of SARS-CoV-2 was observed under transmission electron microscope after treatment with LS. Proinflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. The results showed that LS could significantly inhibit SARS-CoV-2 replication in Vero E6 cells, and reduce the number of virus particles and it could markedly reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-8, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Moreover, the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blot and it was found that LS could inhibit the expression of p-NF-κB p65, p-IκBα and p-p38 MAPK, while increasing the expression of IκBα. These findings indicate that LS could inhibit SARS-CoV-2 virus infection via downregulating the expression of inflammatory cytokines induced virus and regulating the activity of NF-κB/MAPK signaling pathway in vitro, making its promising candidate treatment for controlling COVID-19 disease.


Assuntos
Betacoronavirus/efeitos dos fármacos , Misturas Complexas/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , COVID-19 , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Humanos , Mediadores da Inflamação/metabolismo , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Vírion/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA